pandas filling nans by mean of before and after non-nan values
I would like to fill df
's nan
with an average of adjacent elements.
Consider a dataframe:
df = pd.DataFrame({'val': [1,np.nan, 4, 5, np.nan, 10, 1,2,5, np.nan, np.nan, 9]})
val
0 1.0
1 NaN
2 4.0
3 5.0
4 NaN
5 10.0
6 1.0
7 2.0
8 5.0
9 NaN
10 NaN
11 9.0
My desired output is:
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0 <<< deadend
10 7.0 <<< deadend
11 9.0
I've looked into other solutions such as Fill cell containing NaN with average of value before and after, but this won't work in case of two or more consecutive np.nan
s.
Any help is greatly appreciated!
python pandas
add a comment |
I would like to fill df
's nan
with an average of adjacent elements.
Consider a dataframe:
df = pd.DataFrame({'val': [1,np.nan, 4, 5, np.nan, 10, 1,2,5, np.nan, np.nan, 9]})
val
0 1.0
1 NaN
2 4.0
3 5.0
4 NaN
5 10.0
6 1.0
7 2.0
8 5.0
9 NaN
10 NaN
11 9.0
My desired output is:
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0 <<< deadend
10 7.0 <<< deadend
11 9.0
I've looked into other solutions such as Fill cell containing NaN with average of value before and after, but this won't work in case of two or more consecutive np.nan
s.
Any help is greatly appreciated!
python pandas
add a comment |
I would like to fill df
's nan
with an average of adjacent elements.
Consider a dataframe:
df = pd.DataFrame({'val': [1,np.nan, 4, 5, np.nan, 10, 1,2,5, np.nan, np.nan, 9]})
val
0 1.0
1 NaN
2 4.0
3 5.0
4 NaN
5 10.0
6 1.0
7 2.0
8 5.0
9 NaN
10 NaN
11 9.0
My desired output is:
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0 <<< deadend
10 7.0 <<< deadend
11 9.0
I've looked into other solutions such as Fill cell containing NaN with average of value before and after, but this won't work in case of two or more consecutive np.nan
s.
Any help is greatly appreciated!
python pandas
I would like to fill df
's nan
with an average of adjacent elements.
Consider a dataframe:
df = pd.DataFrame({'val': [1,np.nan, 4, 5, np.nan, 10, 1,2,5, np.nan, np.nan, 9]})
val
0 1.0
1 NaN
2 4.0
3 5.0
4 NaN
5 10.0
6 1.0
7 2.0
8 5.0
9 NaN
10 NaN
11 9.0
My desired output is:
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0 <<< deadend
10 7.0 <<< deadend
11 9.0
I've looked into other solutions such as Fill cell containing NaN with average of value before and after, but this won't work in case of two or more consecutive np.nan
s.
Any help is greatly appreciated!
python pandas
python pandas
asked 1 hour ago
ChrisChris
1,211214
1,211214
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Use ffill
+ bfill
and divide by 2:
df = (df.ffill()+df.bfill())/2
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0
10 7.0
11 9.0
EDIT : If 1st and last element contains NaN
then use (Dark
suggestion):
df = pd.DataFrame({'val':[np.nan,1,np.nan, 4, 5, np.nan,
10, 1,2,5, np.nan, np.nan, 9,np.nan,]})
df = (df.ffill()+df.bfill())/2
df = df.bfill().ffill()
print(df)
val
0 1.0
1 1.0
2 2.5
3 4.0
4 5.0
5 7.5
6 10.0
7 1.0
8 2.0
9 5.0
10 7.0
11 7.0
12 9.0
13 9.0
3
That is just brilliant. Thanks a ton :)
– Chris
1 hour ago
@Chris Glad to help.
– Sandeep Kadapa
1 hour ago
3
If first and last elements arenan
. Then usedf.bfill().ffill()
after using the above solution.
– Dark
1 hour ago
@anon01 Good point
– Chris
1 hour ago
@Dark Great suggestion :) Thanks for the insight
– Chris
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54414269%2fpandas-filling-nans-by-mean-of-before-and-after-non-nan-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use ffill
+ bfill
and divide by 2:
df = (df.ffill()+df.bfill())/2
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0
10 7.0
11 9.0
EDIT : If 1st and last element contains NaN
then use (Dark
suggestion):
df = pd.DataFrame({'val':[np.nan,1,np.nan, 4, 5, np.nan,
10, 1,2,5, np.nan, np.nan, 9,np.nan,]})
df = (df.ffill()+df.bfill())/2
df = df.bfill().ffill()
print(df)
val
0 1.0
1 1.0
2 2.5
3 4.0
4 5.0
5 7.5
6 10.0
7 1.0
8 2.0
9 5.0
10 7.0
11 7.0
12 9.0
13 9.0
3
That is just brilliant. Thanks a ton :)
– Chris
1 hour ago
@Chris Glad to help.
– Sandeep Kadapa
1 hour ago
3
If first and last elements arenan
. Then usedf.bfill().ffill()
after using the above solution.
– Dark
1 hour ago
@anon01 Good point
– Chris
1 hour ago
@Dark Great suggestion :) Thanks for the insight
– Chris
1 hour ago
add a comment |
Use ffill
+ bfill
and divide by 2:
df = (df.ffill()+df.bfill())/2
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0
10 7.0
11 9.0
EDIT : If 1st and last element contains NaN
then use (Dark
suggestion):
df = pd.DataFrame({'val':[np.nan,1,np.nan, 4, 5, np.nan,
10, 1,2,5, np.nan, np.nan, 9,np.nan,]})
df = (df.ffill()+df.bfill())/2
df = df.bfill().ffill()
print(df)
val
0 1.0
1 1.0
2 2.5
3 4.0
4 5.0
5 7.5
6 10.0
7 1.0
8 2.0
9 5.0
10 7.0
11 7.0
12 9.0
13 9.0
3
That is just brilliant. Thanks a ton :)
– Chris
1 hour ago
@Chris Glad to help.
– Sandeep Kadapa
1 hour ago
3
If first and last elements arenan
. Then usedf.bfill().ffill()
after using the above solution.
– Dark
1 hour ago
@anon01 Good point
– Chris
1 hour ago
@Dark Great suggestion :) Thanks for the insight
– Chris
1 hour ago
add a comment |
Use ffill
+ bfill
and divide by 2:
df = (df.ffill()+df.bfill())/2
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0
10 7.0
11 9.0
EDIT : If 1st and last element contains NaN
then use (Dark
suggestion):
df = pd.DataFrame({'val':[np.nan,1,np.nan, 4, 5, np.nan,
10, 1,2,5, np.nan, np.nan, 9,np.nan,]})
df = (df.ffill()+df.bfill())/2
df = df.bfill().ffill()
print(df)
val
0 1.0
1 1.0
2 2.5
3 4.0
4 5.0
5 7.5
6 10.0
7 1.0
8 2.0
9 5.0
10 7.0
11 7.0
12 9.0
13 9.0
Use ffill
+ bfill
and divide by 2:
df = (df.ffill()+df.bfill())/2
print(df)
val
0 1.0
1 2.5
2 4.0
3 5.0
4 7.5
5 10.0
6 1.0
7 2.0
8 5.0
9 7.0
10 7.0
11 9.0
EDIT : If 1st and last element contains NaN
then use (Dark
suggestion):
df = pd.DataFrame({'val':[np.nan,1,np.nan, 4, 5, np.nan,
10, 1,2,5, np.nan, np.nan, 9,np.nan,]})
df = (df.ffill()+df.bfill())/2
df = df.bfill().ffill()
print(df)
val
0 1.0
1 1.0
2 2.5
3 4.0
4 5.0
5 7.5
6 10.0
7 1.0
8 2.0
9 5.0
10 7.0
11 7.0
12 9.0
13 9.0
edited 1 hour ago
answered 1 hour ago
Sandeep KadapaSandeep Kadapa
6,908630
6,908630
3
That is just brilliant. Thanks a ton :)
– Chris
1 hour ago
@Chris Glad to help.
– Sandeep Kadapa
1 hour ago
3
If first and last elements arenan
. Then usedf.bfill().ffill()
after using the above solution.
– Dark
1 hour ago
@anon01 Good point
– Chris
1 hour ago
@Dark Great suggestion :) Thanks for the insight
– Chris
1 hour ago
add a comment |
3
That is just brilliant. Thanks a ton :)
– Chris
1 hour ago
@Chris Glad to help.
– Sandeep Kadapa
1 hour ago
3
If first and last elements arenan
. Then usedf.bfill().ffill()
after using the above solution.
– Dark
1 hour ago
@anon01 Good point
– Chris
1 hour ago
@Dark Great suggestion :) Thanks for the insight
– Chris
1 hour ago
3
3
That is just brilliant. Thanks a ton :)
– Chris
1 hour ago
That is just brilliant. Thanks a ton :)
– Chris
1 hour ago
@Chris Glad to help.
– Sandeep Kadapa
1 hour ago
@Chris Glad to help.
– Sandeep Kadapa
1 hour ago
3
3
If first and last elements are
nan
. Then use df.bfill().ffill()
after using the above solution.– Dark
1 hour ago
If first and last elements are
nan
. Then use df.bfill().ffill()
after using the above solution.– Dark
1 hour ago
@anon01 Good point
– Chris
1 hour ago
@anon01 Good point
– Chris
1 hour ago
@Dark Great suggestion :) Thanks for the insight
– Chris
1 hour ago
@Dark Great suggestion :) Thanks for the insight
– Chris
1 hour ago
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54414269%2fpandas-filling-nans-by-mean-of-before-and-after-non-nan-values%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown