Relation between roots and coefficients - manipulation of identities
$begingroup$
The polynomial $x^3+3x^2-2x+1$ has roots $alpha, beta, gamma$ . Find $$alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)$$
I tried finding the relation using $-b/a$, $c/a$ and $-d/a$. I couldn’t seem to find anything. I also tried solving for one root but it gave me back the polynomial but with the root as the variable. Also the polynomial can not be factorised.
polynomials
New contributor
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
add a comment |
$begingroup$
The polynomial $x^3+3x^2-2x+1$ has roots $alpha, beta, gamma$ . Find $$alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)$$
I tried finding the relation using $-b/a$, $c/a$ and $-d/a$. I couldn’t seem to find anything. I also tried solving for one root but it gave me back the polynomial but with the root as the variable. Also the polynomial can not be factorised.
polynomials
New contributor
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
add a comment |
$begingroup$
The polynomial $x^3+3x^2-2x+1$ has roots $alpha, beta, gamma$ . Find $$alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)$$
I tried finding the relation using $-b/a$, $c/a$ and $-d/a$. I couldn’t seem to find anything. I also tried solving for one root but it gave me back the polynomial but with the root as the variable. Also the polynomial can not be factorised.
polynomials
New contributor
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
The polynomial $x^3+3x^2-2x+1$ has roots $alpha, beta, gamma$ . Find $$alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)$$
I tried finding the relation using $-b/a$, $c/a$ and $-d/a$. I couldn’t seem to find anything. I also tried solving for one root but it gave me back the polynomial but with the root as the variable. Also the polynomial can not be factorised.
polynomials
polynomials
New contributor
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
edited 2 hours ago
![](https://lh5.googleusercontent.com/-4tiEjr4jwCI/AAAAAAAAAAI/AAAAAAAAALo/TVwmGutzfYA/photo.jpg?sz=32)
![](https://lh5.googleusercontent.com/-4tiEjr4jwCI/AAAAAAAAAAI/AAAAAAAAALo/TVwmGutzfYA/photo.jpg?sz=32)
Eevee Trainer
6,41811237
6,41811237
New contributor
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
asked 2 hours ago
MmloilerMmloiler
111
111
New contributor
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Mmloiler is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
$endgroup$
add a comment |
$begingroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
$endgroup$
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
53 mins ago
add a comment |
$begingroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3121014%2frelation-between-roots-and-coefficients-manipulation-of-identities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
$endgroup$
add a comment |
$begingroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
$endgroup$
add a comment |
$begingroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
$endgroup$
Since the polynomial has three roots and its highest degree is 3, we can write
$$
p(x) = (x-alpha)(x-beta)(x-gamma) = x^3 +3x^2 - 2x + 1.
$$
It then follows from
$$
x^3 - (alpha+beta+gamma)x^2 + (alphabeta + beta gamma + gamma alpha)x - alphabeta gamma = x^3+3x^2-2x + 1
$$
that
$$
alpha+beta+gamma = -3, quad alphabeta + beta gamma + gamma alpha = -2, quad
alphabeta gamma = -1.
$$
Note that
$$
-2alpha = alpha(alphabeta + beta gamma + gamma alpha) = alpha^2(beta+gamma) +alphabetagamma = alpha^2(beta+gamma) - 1.
$$
Thus $alpha^2(beta + gamma)=1-2alpha$.
Similarly, $beta^2(alpha + gamma) = 1-2beta$ and $gamma^2(alpha + beta) = 1-2gamma$.
Therefore,
begin{align}
alpha^2(beta + gamma) + beta^2(alpha + gamma) + gamma^2(alpha + beta)
&= (1-2alpha) + (1-2beta) + (1-2gamma) \
&= 3 -2(alpha+beta+gamma) = 3 +6 =9.
end{align}
answered 1 hour ago
induction601induction601
1,216314
1,216314
add a comment |
add a comment |
$begingroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
$endgroup$
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
53 mins ago
add a comment |
$begingroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
$endgroup$
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
53 mins ago
add a comment |
$begingroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
$endgroup$
Any symmetric (polynomial) function of the roots can be expressed in terms of the Vieta coefficients. Here, check the hint:
$$sum alpha^2(beta+gamma) = (alpha+beta+gamma)(alphabeta+betagamma+gammaalpha)-3alphabetagamma$$
--
In case you want a systematic method to express in terms of elementary symmetric polynomials, check this answer for Gauss' algorithm.
edited 1 hour ago
answered 1 hour ago
![](https://i.stack.imgur.com/hXxRJ.jpg?s=32&g=1)
![](https://i.stack.imgur.com/hXxRJ.jpg?s=32&g=1)
MacavityMacavity
35.5k52554
35.5k52554
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
53 mins ago
add a comment |
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
53 mins ago
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
53 mins ago
$begingroup$
Another often useful approach is to transform the polynomial (and / or) the result using the given polynomial. For e.g. $sum alpha^2(beta+gamma) = sumalpha^2(-3-alpha) = sum (-alpha^3-3alpha^2) = sum (-2alpha+1)=-2cdot(-3)+3=9 $
$endgroup$
– Macavity
53 mins ago
add a comment |
$begingroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
1 hour ago
add a comment |
$begingroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
1 hour ago
add a comment |
$begingroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
$a,b,c$ are the three roots.
$$
begin{align}
&a^2*(b+c)+b^2*(a+c)+c^2*(a+b)\
={}&(a+b+c)*(a^2+b^2+c^2)-(a^3+b^3+c^3)\
={}&(-3)*(a^2+b^2+c^2)-(a+b+c)^3\
={}&(-3)*((a+b+c)^2-2ab-2ac-2bc)-(a+b+c) * (a^2+b^2+c^2) + ab(a+b) + ac(a+c) + bc(b+c)\
={}& (-3)*(9-2*(-2))-(-3)*(9-2*(-2)) + ab(a+b+c-c) + ac(a+b+c-b) + bc(a+b+c-a)\
={}&(a+b+c)(ab+ac+bc)-3abc\
={}&(-3)*(-2)-3*(-1)\
={}&6-(-3)\
={}&9
end{align}
$$
New contributor
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
edited 17 mins ago
Brahadeesh
6,46942363
6,46942363
New contributor
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
answered 1 hour ago
![](https://lh5.googleusercontent.com/-dYaYtG4WhnA/AAAAAAAAAAI/AAAAAAAAAA8/ASzHAx6Z5rM/photo.jpg?sz=32)
![](https://lh5.googleusercontent.com/-dYaYtG4WhnA/AAAAAAAAAAI/AAAAAAAAAA8/ASzHAx6Z5rM/photo.jpg?sz=32)
Wentao WangWentao Wang
11
11
New contributor
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Wentao Wang is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
1 hour ago
add a comment |
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
1 hour ago
5
5
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
1 hour ago
$begingroup$
Welcome to MSE. Note that I, at least, found what you wrote hard to read. To help make your future math formatting look better, I suggest you read & use what it says in MathJax basic tutorial and quick reference.
$endgroup$
– John Omielan
1 hour ago
add a comment |
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Mmloiler is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3121014%2frelation-between-roots-and-coefficients-manipulation-of-identities%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown