Rotating in orbit?












3












$begingroup$


Reading this question (Is the cupola, on the inside of the ISS, cold or warm to the touch?) prompted me to wonder about an object in orbit's orientation as it orbits its host object. For example, consider a hollow tube that is in orbit around the earth and it is perfectly perpendicular to the earth. Spaceman Spiff is immediately beneath the cylinder, and is able to look through the cylinder and observe a specific star.



As he and the tube orbit around the earth (assuming no external influences other than the earth's gravity), would the tube remain pointed at the star (hence the tube changing from perpendicular orientation in relation to the earth to parallel as it gets to 1/4 around its orbit) and Spiff would continue to see the same star in his view? Or, would the cylinder remain perpendicular to the earth, and Spiff would see a continually changing field of stars during his orbit, until he gets back to his starting position, when the star would come back into view as he completes his orbit?



Most spacecraft, I believe, are designed and controlled very carefaully to maintain a specific orientation with the earth, but I don't know what would happen if there was no spacecraft control mechanism or external forces acting on it.










share|improve this question









$endgroup$












  • $begingroup$
    I don't think this is necessarily a duplicate but it has good information about what happens to long thin objects (like your tube) in orbit. space.stackexchange.com/questions/17816/…
    $endgroup$
    – Organic Marble
    8 hours ago










  • $begingroup$
    If Spiff were rotating once about his axis for every orbit around the Earth, in the same direction as his orbit then the Earth would appear very nearly stationary below him (depending on eccentricity and uniformity of gravitational field) and the star would appear in the tube once per obit. If, on the other hand Spiff had no rotation, then the star would remain visible in the tube (except when obscured by the Earth. Any other states of angular momentum would have different results.
    $endgroup$
    – JCRM
    7 hours ago










  • $begingroup$
    (assuming no external influences other than the earth's gravity) Can we theoretically balance a perfectly symmetrical pencil on its one-atom tip? - The uncertainty principle says, no. But if you spun it...
    $endgroup$
    – Mazura
    27 mins ago


















3












$begingroup$


Reading this question (Is the cupola, on the inside of the ISS, cold or warm to the touch?) prompted me to wonder about an object in orbit's orientation as it orbits its host object. For example, consider a hollow tube that is in orbit around the earth and it is perfectly perpendicular to the earth. Spaceman Spiff is immediately beneath the cylinder, and is able to look through the cylinder and observe a specific star.



As he and the tube orbit around the earth (assuming no external influences other than the earth's gravity), would the tube remain pointed at the star (hence the tube changing from perpendicular orientation in relation to the earth to parallel as it gets to 1/4 around its orbit) and Spiff would continue to see the same star in his view? Or, would the cylinder remain perpendicular to the earth, and Spiff would see a continually changing field of stars during his orbit, until he gets back to his starting position, when the star would come back into view as he completes his orbit?



Most spacecraft, I believe, are designed and controlled very carefaully to maintain a specific orientation with the earth, but I don't know what would happen if there was no spacecraft control mechanism or external forces acting on it.










share|improve this question









$endgroup$












  • $begingroup$
    I don't think this is necessarily a duplicate but it has good information about what happens to long thin objects (like your tube) in orbit. space.stackexchange.com/questions/17816/…
    $endgroup$
    – Organic Marble
    8 hours ago










  • $begingroup$
    If Spiff were rotating once about his axis for every orbit around the Earth, in the same direction as his orbit then the Earth would appear very nearly stationary below him (depending on eccentricity and uniformity of gravitational field) and the star would appear in the tube once per obit. If, on the other hand Spiff had no rotation, then the star would remain visible in the tube (except when obscured by the Earth. Any other states of angular momentum would have different results.
    $endgroup$
    – JCRM
    7 hours ago










  • $begingroup$
    (assuming no external influences other than the earth's gravity) Can we theoretically balance a perfectly symmetrical pencil on its one-atom tip? - The uncertainty principle says, no. But if you spun it...
    $endgroup$
    – Mazura
    27 mins ago
















3












3








3





$begingroup$


Reading this question (Is the cupola, on the inside of the ISS, cold or warm to the touch?) prompted me to wonder about an object in orbit's orientation as it orbits its host object. For example, consider a hollow tube that is in orbit around the earth and it is perfectly perpendicular to the earth. Spaceman Spiff is immediately beneath the cylinder, and is able to look through the cylinder and observe a specific star.



As he and the tube orbit around the earth (assuming no external influences other than the earth's gravity), would the tube remain pointed at the star (hence the tube changing from perpendicular orientation in relation to the earth to parallel as it gets to 1/4 around its orbit) and Spiff would continue to see the same star in his view? Or, would the cylinder remain perpendicular to the earth, and Spiff would see a continually changing field of stars during his orbit, until he gets back to his starting position, when the star would come back into view as he completes his orbit?



Most spacecraft, I believe, are designed and controlled very carefaully to maintain a specific orientation with the earth, but I don't know what would happen if there was no spacecraft control mechanism or external forces acting on it.










share|improve this question









$endgroup$




Reading this question (Is the cupola, on the inside of the ISS, cold or warm to the touch?) prompted me to wonder about an object in orbit's orientation as it orbits its host object. For example, consider a hollow tube that is in orbit around the earth and it is perfectly perpendicular to the earth. Spaceman Spiff is immediately beneath the cylinder, and is able to look through the cylinder and observe a specific star.



As he and the tube orbit around the earth (assuming no external influences other than the earth's gravity), would the tube remain pointed at the star (hence the tube changing from perpendicular orientation in relation to the earth to parallel as it gets to 1/4 around its orbit) and Spiff would continue to see the same star in his view? Or, would the cylinder remain perpendicular to the earth, and Spiff would see a continually changing field of stars during his orbit, until he gets back to his starting position, when the star would come back into view as he completes his orbit?



Most spacecraft, I believe, are designed and controlled very carefaully to maintain a specific orientation with the earth, but I don't know what would happen if there was no spacecraft control mechanism or external forces acting on it.







orbital-mechanics






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 8 hours ago









MilwrdfanMilwrdfan

653210




653210












  • $begingroup$
    I don't think this is necessarily a duplicate but it has good information about what happens to long thin objects (like your tube) in orbit. space.stackexchange.com/questions/17816/…
    $endgroup$
    – Organic Marble
    8 hours ago










  • $begingroup$
    If Spiff were rotating once about his axis for every orbit around the Earth, in the same direction as his orbit then the Earth would appear very nearly stationary below him (depending on eccentricity and uniformity of gravitational field) and the star would appear in the tube once per obit. If, on the other hand Spiff had no rotation, then the star would remain visible in the tube (except when obscured by the Earth. Any other states of angular momentum would have different results.
    $endgroup$
    – JCRM
    7 hours ago










  • $begingroup$
    (assuming no external influences other than the earth's gravity) Can we theoretically balance a perfectly symmetrical pencil on its one-atom tip? - The uncertainty principle says, no. But if you spun it...
    $endgroup$
    – Mazura
    27 mins ago




















  • $begingroup$
    I don't think this is necessarily a duplicate but it has good information about what happens to long thin objects (like your tube) in orbit. space.stackexchange.com/questions/17816/…
    $endgroup$
    – Organic Marble
    8 hours ago










  • $begingroup$
    If Spiff were rotating once about his axis for every orbit around the Earth, in the same direction as his orbit then the Earth would appear very nearly stationary below him (depending on eccentricity and uniformity of gravitational field) and the star would appear in the tube once per obit. If, on the other hand Spiff had no rotation, then the star would remain visible in the tube (except when obscured by the Earth. Any other states of angular momentum would have different results.
    $endgroup$
    – JCRM
    7 hours ago










  • $begingroup$
    (assuming no external influences other than the earth's gravity) Can we theoretically balance a perfectly symmetrical pencil on its one-atom tip? - The uncertainty principle says, no. But if you spun it...
    $endgroup$
    – Mazura
    27 mins ago


















$begingroup$
I don't think this is necessarily a duplicate but it has good information about what happens to long thin objects (like your tube) in orbit. space.stackexchange.com/questions/17816/…
$endgroup$
– Organic Marble
8 hours ago




$begingroup$
I don't think this is necessarily a duplicate but it has good information about what happens to long thin objects (like your tube) in orbit. space.stackexchange.com/questions/17816/…
$endgroup$
– Organic Marble
8 hours ago












$begingroup$
If Spiff were rotating once about his axis for every orbit around the Earth, in the same direction as his orbit then the Earth would appear very nearly stationary below him (depending on eccentricity and uniformity of gravitational field) and the star would appear in the tube once per obit. If, on the other hand Spiff had no rotation, then the star would remain visible in the tube (except when obscured by the Earth. Any other states of angular momentum would have different results.
$endgroup$
– JCRM
7 hours ago




$begingroup$
If Spiff were rotating once about his axis for every orbit around the Earth, in the same direction as his orbit then the Earth would appear very nearly stationary below him (depending on eccentricity and uniformity of gravitational field) and the star would appear in the tube once per obit. If, on the other hand Spiff had no rotation, then the star would remain visible in the tube (except when obscured by the Earth. Any other states of angular momentum would have different results.
$endgroup$
– JCRM
7 hours ago












$begingroup$
(assuming no external influences other than the earth's gravity) Can we theoretically balance a perfectly symmetrical pencil on its one-atom tip? - The uncertainty principle says, no. But if you spun it...
$endgroup$
– Mazura
27 mins ago






$begingroup$
(assuming no external influences other than the earth's gravity) Can we theoretically balance a perfectly symmetrical pencil on its one-atom tip? - The uncertainty principle says, no. But if you spun it...
$endgroup$
– Mazura
27 mins ago












1 Answer
1






active

oldest

votes


















6












$begingroup$

It depends.



If the cylinder's rotation was carefully stopped, then nothing else acted on it, it would hold its orientation and Spiff would see the same star through a complete orbit, while the tube went from Earth-surface-perpendicular to parallel and back.



If the cylinder's rotation was carefully matched to its orbit, so that it turned through 360 degrees over the course of a single revolution around the Earth, then nothing else acted on it, it would remain Earth-surface-perpendicular throughout.



As @Organic Marble's linked QA describes, long skinny objects in orbit are subject to tidal gradient forces, so if the tube is long enough, it will slowly get pulled into an always-perpendicular-to-Earth rotating orientation.



In low Earth orbit, there's also a very very small amount of atmosphere that the tube would be moving through; this would tend to have the opposite effect, making it tumble, or (if one end of it is denser/heavier than the other) making it tend to stabilize in an earth-parallel orientation.



The relative strength of the tidal and atmospheric effects will vary with the size and mass of the tube and orbital altitude, and I'm too lazy to work through a test case to see which one dominates. :)






share|improve this answer









$endgroup$













  • $begingroup$
    Won't Spiff orbit faster than the tube? Also, "it would hold its orientation..." should be qualified "begin to rotate immediately due to tidal effects" Plug in some numbers for the long tube to see how quickly it would drift away from the star's position.
    $endgroup$
    – uhoh
    38 mins ago













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "508"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f33586%2frotating-in-orbit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

It depends.



If the cylinder's rotation was carefully stopped, then nothing else acted on it, it would hold its orientation and Spiff would see the same star through a complete orbit, while the tube went from Earth-surface-perpendicular to parallel and back.



If the cylinder's rotation was carefully matched to its orbit, so that it turned through 360 degrees over the course of a single revolution around the Earth, then nothing else acted on it, it would remain Earth-surface-perpendicular throughout.



As @Organic Marble's linked QA describes, long skinny objects in orbit are subject to tidal gradient forces, so if the tube is long enough, it will slowly get pulled into an always-perpendicular-to-Earth rotating orientation.



In low Earth orbit, there's also a very very small amount of atmosphere that the tube would be moving through; this would tend to have the opposite effect, making it tumble, or (if one end of it is denser/heavier than the other) making it tend to stabilize in an earth-parallel orientation.



The relative strength of the tidal and atmospheric effects will vary with the size and mass of the tube and orbital altitude, and I'm too lazy to work through a test case to see which one dominates. :)






share|improve this answer









$endgroup$













  • $begingroup$
    Won't Spiff orbit faster than the tube? Also, "it would hold its orientation..." should be qualified "begin to rotate immediately due to tidal effects" Plug in some numbers for the long tube to see how quickly it would drift away from the star's position.
    $endgroup$
    – uhoh
    38 mins ago


















6












$begingroup$

It depends.



If the cylinder's rotation was carefully stopped, then nothing else acted on it, it would hold its orientation and Spiff would see the same star through a complete orbit, while the tube went from Earth-surface-perpendicular to parallel and back.



If the cylinder's rotation was carefully matched to its orbit, so that it turned through 360 degrees over the course of a single revolution around the Earth, then nothing else acted on it, it would remain Earth-surface-perpendicular throughout.



As @Organic Marble's linked QA describes, long skinny objects in orbit are subject to tidal gradient forces, so if the tube is long enough, it will slowly get pulled into an always-perpendicular-to-Earth rotating orientation.



In low Earth orbit, there's also a very very small amount of atmosphere that the tube would be moving through; this would tend to have the opposite effect, making it tumble, or (if one end of it is denser/heavier than the other) making it tend to stabilize in an earth-parallel orientation.



The relative strength of the tidal and atmospheric effects will vary with the size and mass of the tube and orbital altitude, and I'm too lazy to work through a test case to see which one dominates. :)






share|improve this answer









$endgroup$













  • $begingroup$
    Won't Spiff orbit faster than the tube? Also, "it would hold its orientation..." should be qualified "begin to rotate immediately due to tidal effects" Plug in some numbers for the long tube to see how quickly it would drift away from the star's position.
    $endgroup$
    – uhoh
    38 mins ago
















6












6








6





$begingroup$

It depends.



If the cylinder's rotation was carefully stopped, then nothing else acted on it, it would hold its orientation and Spiff would see the same star through a complete orbit, while the tube went from Earth-surface-perpendicular to parallel and back.



If the cylinder's rotation was carefully matched to its orbit, so that it turned through 360 degrees over the course of a single revolution around the Earth, then nothing else acted on it, it would remain Earth-surface-perpendicular throughout.



As @Organic Marble's linked QA describes, long skinny objects in orbit are subject to tidal gradient forces, so if the tube is long enough, it will slowly get pulled into an always-perpendicular-to-Earth rotating orientation.



In low Earth orbit, there's also a very very small amount of atmosphere that the tube would be moving through; this would tend to have the opposite effect, making it tumble, or (if one end of it is denser/heavier than the other) making it tend to stabilize in an earth-parallel orientation.



The relative strength of the tidal and atmospheric effects will vary with the size and mass of the tube and orbital altitude, and I'm too lazy to work through a test case to see which one dominates. :)






share|improve this answer









$endgroup$



It depends.



If the cylinder's rotation was carefully stopped, then nothing else acted on it, it would hold its orientation and Spiff would see the same star through a complete orbit, while the tube went from Earth-surface-perpendicular to parallel and back.



If the cylinder's rotation was carefully matched to its orbit, so that it turned through 360 degrees over the course of a single revolution around the Earth, then nothing else acted on it, it would remain Earth-surface-perpendicular throughout.



As @Organic Marble's linked QA describes, long skinny objects in orbit are subject to tidal gradient forces, so if the tube is long enough, it will slowly get pulled into an always-perpendicular-to-Earth rotating orientation.



In low Earth orbit, there's also a very very small amount of atmosphere that the tube would be moving through; this would tend to have the opposite effect, making it tumble, or (if one end of it is denser/heavier than the other) making it tend to stabilize in an earth-parallel orientation.



The relative strength of the tidal and atmospheric effects will vary with the size and mass of the tube and orbital altitude, and I'm too lazy to work through a test case to see which one dominates. :)







share|improve this answer












share|improve this answer



share|improve this answer










answered 7 hours ago









Russell BorogoveRussell Borogove

83.9k2281362




83.9k2281362












  • $begingroup$
    Won't Spiff orbit faster than the tube? Also, "it would hold its orientation..." should be qualified "begin to rotate immediately due to tidal effects" Plug in some numbers for the long tube to see how quickly it would drift away from the star's position.
    $endgroup$
    – uhoh
    38 mins ago




















  • $begingroup$
    Won't Spiff orbit faster than the tube? Also, "it would hold its orientation..." should be qualified "begin to rotate immediately due to tidal effects" Plug in some numbers for the long tube to see how quickly it would drift away from the star's position.
    $endgroup$
    – uhoh
    38 mins ago


















$begingroup$
Won't Spiff orbit faster than the tube? Also, "it would hold its orientation..." should be qualified "begin to rotate immediately due to tidal effects" Plug in some numbers for the long tube to see how quickly it would drift away from the star's position.
$endgroup$
– uhoh
38 mins ago






$begingroup$
Won't Spiff orbit faster than the tube? Also, "it would hold its orientation..." should be qualified "begin to rotate immediately due to tidal effects" Plug in some numbers for the long tube to see how quickly it would drift away from the star's position.
$endgroup$
– uhoh
38 mins ago




















draft saved

draft discarded




















































Thanks for contributing an answer to Space Exploration Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f33586%2frotating-in-orbit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Statuo de Libereco

Tanganjiko

Liste der Baudenkmäler in Enneberg