Do similar matrices have same characteristic equations?
$begingroup$
Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?
linear-algebra
$endgroup$
add a comment |
$begingroup$
Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?
linear-algebra
$endgroup$
Since similar matrices have same eigenvalues and characteristic polynomials, then they must have the same characteristic equation, right?
linear-algebra
linear-algebra
asked 2 hours ago
Samurai BaleSamurai Bale
503
503
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
$endgroup$
add a comment |
$begingroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142004%2fdo-similar-matrices-have-same-characteristic-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
$endgroup$
add a comment |
$begingroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
$endgroup$
add a comment |
$begingroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
$endgroup$
Suppose $A$ and $B$ are square matrices such that $A = P B P^{-1}$ for some invertible matrix $P$. Then
begin{align*}text{charpoly}(A,t) & = det(A - tI)\
& = det(PBP^{-1} - tI)\
& = det(PBP^{-1}-tPP^{-1})\
& = det(P(B-tI)P^{-1})\
& = det(P)det(B - tI) det(P^{-1})\
& = det(P)det(B - tI) frac{1}{det(P)}\
& = det(B-tI)\
& = text{charpoly}(B,t).
end{align*}
This shows that similar matrices have the same characteristic polynomial. Note that this proof relies on several facts. In particular, the determinant is multiplicative.
edited 1 hour ago
J. W. Tanner
2,9541318
2,9541318
answered 1 hour ago
johnny133253johnny133253
384110
384110
add a comment |
add a comment |
$begingroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
$endgroup$
add a comment |
$begingroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
$endgroup$
add a comment |
$begingroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
$endgroup$
Note that $det (lambda I -A) = det S det (lambda I -A) det S^{-1} = det (lambda I - S A S^{-1})$.
answered 2 hours ago
copper.hatcopper.hat
127k559160
127k559160
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3142004%2fdo-similar-matrices-have-same-characteristic-equations%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown